THE LOWER BOUND FOR MSE IN STATISTICAL PREDICTION THEORY

Yoichi Miyata*

This paper is concerned with an inequality for MSE in statistical prediction theory. Takeuchi (1975) provided the inequality for a risk of unbiased predictor under certain regularity conditions. We shall provide an inequality for MSE of an unbiased predictor from L^2-differentiability of densities point of view. In addition, this inequality is simplified and corresponded to the above under slightly stronger conditions. We shall also state the criterion for L^2-differentiability in the case that an observable random vector and a predictive random variable are not independent.

Key words and phrases: unbiased predictor, Cramér-Rao inequality, differentiability in quadratic mean.

1. Introduction

Suppose that $\{X, \mathcal{A}, \mu\}$ and $\{Y, \mathcal{B}, \nu\}$ are two measure spaces. Let \mathcal{A} and \mathcal{B} be σ-algebras of subsets of X and Y, and μ and ν be σ-finite measures on X and Y, respectively. $\{X \times Y, \mathcal{A} \times \mathcal{B}, \mu \times \nu\}$ is the cartesian product space of $\{X, \mathcal{A}, \mu\}$ and $\{Y, \mathcal{B}, \nu\}$. Let (P^θ_{XY}) be probability distributions on $X \times Y$ with densities $p^\theta(x, y)$ relative to a σ-finite measure $\mu \times \nu$, and (P^θ_{X}) a marginal distribution for a random vector X. The parameter space Θ is an open subset of \mathbb{R}^d. Let $X = (X_1, \ldots, X_n)$ be an observable random vector taking values in X, and Y an unknown random variable taking values in Y. Then the problem of predicting the value of Y based on X is called a statistical prediction problem, as described in Takeuchi (1975). A predictor $T(X)$ is said to be unbiased if $E^\theta(T(X) - Y) = 0$ for every $\theta \in \Theta$. We denote the conditional expectation of Y given X by $g(X : \theta) := E^\theta(Y | X)$, the transpose of a matrix M by M'.

The following inequality gives a lower bound for MSE of an unbiased predictor. This is a version of the Cramér-Rao inequality to the prediction problem. For the proof, see Takeuchi (1975) p. 16 and Ishii (1978a) pp. 72–75.

Theorem 1.1. Under suitable regularity conditions

$$E^\theta(Y - T(X))^2 \geq E^\theta(Y - g(X : \theta))^2 + G(\theta)'I^{-1}(\theta)G(\theta),$$

for any unbiased predictor T.

*Waseda University Honjo Senior High School, 1136 Okuboyama, Nishitomita, Honjo-shi Saitama, 367-0035, Japan.
where $G(\theta) = E_\theta\left(\frac{\partial}{\partial \theta} g(X; \theta)\right)$ and $I(\theta) = \int \left(\frac{\partial}{\partial \theta} \log p_\theta(x)\right)\left(\frac{\partial}{\partial \theta} \log p_\theta(x)\right)' dP^X_\theta$.

On the other hand, some probability distributions do not satisfy such regularity conditions since the conditions of Theorem 1.1 need differentiability of densities and $g(X; \theta)$ with respect to θ, having common support of densities with respect to θ and so on. For example, Double Exponential Distribution $X_1, \ldots, X_n, Y \overset{i.i.d.}{\sim} q_\theta(\cdot) = \frac{1}{2}\exp[-|x-\theta|]$ does not satisfy usual regularity condition. But it is well known that the family $(\sqrt{q_\theta})$ is continuous L^2-differentiable. The purpose of this paper is to provide an inequality for MSE of unbiased predictor from L^2-differentiability point of view. The main results we will prove in Section 3 are as follows. (Theorem 3.1 and 3.2):

Suppose that Fisher’s information matrix is nonsingular. Then, a lower bound for MSE of any unbiased predictor is provided when the family $(\sqrt{p_\theta(x)})$ is L^2-differentiable and $E_\theta(Y)$ is ordinary partial differentiable with respect to θ. Furthermore, under more stringent conditions, this bound could be simplified.

In section 4, we will prove that L^2-differentiability of $(\sqrt{p_\theta(x, y)})$ is equivalent to that of $(\sqrt{p_\theta(x)})$ and $(\sqrt{p_\theta(y|x)})$ (Theorem 4.1 and 4.2). Section 5 deals with the proofs of Section 3 and 4.

2. Definition

First, we shall introduce some concepts. We denote the square root of densities by $s_\theta(x) := \sqrt{p_\theta(x)}$, an inner product by (\cdot, \cdot), the Euclidean norm by $|\cdot|$ and the space of functions with $\int |f|^k d\mu < \infty$ by $L^k(\mu)$.

Definition 2.1. A parametrization $\theta \to P^X_\theta$ is L^2-differentiable if for every $\theta \in \Theta$, there exists a function $\hat{s}_\theta(x) \in L^2(\mu)$ such that

$$\int |s_{\theta+h}(x) - s_\theta(x) - (\hat{s}_\theta(x), h)|^2 d\mu = o(|h|^2).$$

If θ is a multivariate parameter point, we consider $\hat{s}_\theta(x)$ as a row vector. We sometimes denote that the family $(\sqrt{p_\theta(x)})$ is L^2-differentiable when a parametrization $\theta \to P^X_\theta$ is L^2-differentiable. We shall use the same notation $\hat{s}_\theta(\cdot)$ for the L^2-derivative as well as for the L^2-gradient; i.e. the row vector of L^2-partial derivatives $\hat{s}_{\theta_i}(\cdot) (i = 1, \ldots, n)$. Define Fisher’s information matrix of θ with respect to μ by

$$I(\theta) = 4 \int \hat{s}_\theta(x)\hat{s}_\theta(x)' d\mu \quad (2.1)$$

and the score function $\hat{l}_\theta(x)$ by
\[\dot{l}_\theta(x) = 2 \frac{s_\theta(x)}{s_\theta(x)} 1_{[s_\theta(x) > 0]} = \frac{\dot{p}_\theta(x)}{p_\theta(x)} 1_{[p_\theta(x) > 0]} . \]

Putting \(I(\theta) = \int \dot{l}_\theta(x) \dot{l}_\theta(x)' dP^X_\theta \), it coincides with (2.1) if \(\sqrt{p_\theta(x)} \) is \(L^2 \)-differentiable. See Bickel, Klaassen, Ritov and Wellner (1993) p. 13. Likewise, we shall define \(L^2 \)-differentibility and Fisher’s information matrix for probability measures \((P^X_{\theta}) \). Secondly, we consider \(L^2 \)-differentiability for the conditional probability density of \(Y \) given \(X \). This basic concept is stated by Kuboki (1987). Define

\[p_\theta(y \mid x) := \begin{cases} \frac{p_\theta(x,y)}{p_\theta(x)} & \text{where } p_\theta(x) > 0, \\ 0 & \text{elsewhere} \end{cases} \]

and the square root of conditional density of \(Y \) by \(s_\theta(y \mid x) := \sqrt{p_\theta(y \mid x)} \).

Definition 2.2. A parametrization \(\theta \rightarrow P_\theta(Y \mid X) \) is \(L^2 \)-differentiable in measure \(P^X_\theta \times \nu \) if for every \(\theta \in \Theta \), there exists a function \(\dot{s}_\theta(y \mid x) \in L^2(P^X_\theta \times \nu) \) such that

\[
\int \int |s_{\theta + h}(y \mid x) - s_\theta(y \mid x) - (\dot{s}_\theta(y \mid x), h)|^2 dP^X_\theta d\nu = o(|h|^2).
\]

To provide the inequality for MSE, we consider the following conditions.

Definition 2.3. The family \((P^X_{\theta}) \) satisfies conditions (i) if the family \((\sqrt{p_\theta(x)}) \) is partial \(L^2 \)-differentiable, \(E_\theta(Y) \) is ordinary partially differentiable with respect to \(\theta \) and Fisher’s information matrix is nonsingular.

Definition 2.4. The family \((P^X_{\theta}) \) satisfies conditions (ii) if the family \((\sqrt{p_\theta(x,y)}) \) is partial \(L^2 \)-differentiable, Fisher’s information matrix is nonsingular, and \(E_{\theta_0}g(X : \theta)^2 \) is bounded for every \(\theta \) in some neighborhood of every fixed point \(\theta_0 \in \Theta \).

Remark 2.5. Conditions (ii) imply condition (i).

Proof. \(L^2 \)-differentiability of \((\sqrt{p_\theta(x)}) \) is proved from that of induced probability measure (Apply Bickel, Klaassen, Ritov and Wellner (1993), Appendix A.5, Proposition 5). Partial differentiability of \(E_\theta(Y) \) is verified by using Lemma 5.3. □
3. Main results

Theorem 3.1. Suppose that $T(X)$ is any unbiased predictor with $E_\theta T(X)^2 < \infty$ and $E_\theta(Y^2) < \infty$. Then, under conditions (i), the following inequality for MSE of $T(X)$ holds:

$$E_\theta(Y - T(X))^2 \geq E_\theta(Y - g(X : \theta))^2 + C(\theta)'I(\theta)^{-1}C(\theta),$$

where $C(\theta) = E_\theta[g(X : \theta)\hat{l}_\theta(X)] - \frac{\partial}{\partial \theta}E_\theta(Y)$.

Theorem 3.2. Suppose that $T(X)$ is any unbiased predictor with $E_\theta T(X)^2 < \infty$ and $E_\theta(Y^2) < \infty$. Under conditions (ii),

$$E_\theta(Y - T(X))^2 \geq E_\theta(Y - g(X : \theta))^2 + E_\theta\hat{g}(X : \theta)'I^{-1}(\theta)E_\theta\hat{g}(X : \theta),$$

where $\hat{g}(X : \theta) = (\hat{g}_1(X : \theta), \ldots, \hat{g}_d(X : \theta))'$ and $\hat{g}_i(X : \theta)$ is the L^1-derivative of $g(X : \theta)$ with respect to each θ_i. Of course, if $g(X : \theta)$ is ordinary partially differentiable, then the derivative coincides with $\hat{g}(X : \theta)$.

Remark 3.3. If $X = (X_1, \ldots, X_n)$ and Y are independent then $C(\theta) = -\frac{\partial}{\partial \theta}E_\theta(Y)$.

In fact, using Remark 5.4, we have $E_\theta[g(X : \theta)\hat{l}_\theta(X)] = E_\theta(Y)E_\theta[\hat{l}_\theta(X)] = 0$. Hence $C(\theta) = -\frac{\partial}{\partial \theta}E_\theta(Y)$.

Theorem 3.4. The equality in (3.1) or (3.2) holds if and only if

$$T_\theta(X) = g(X : \theta) - C(\theta)'I^{-1}(\theta)\hat{l}_\theta(X)$$

for P_θ^X - almost all x.

Proof. This assertion is proved from the same argument given in the proof in Ishii (1978b) pp. 69–70.

Note that the function T_θ specified in (3.3) may depend on θ. In such a case, T_θ is not a predictor and there is no predictor that attains the lower bound. Conversely, if T_θ is an unbiased predictor and does not depend on θ then it attains the lower bound.

Example 1. (Double Exponential Distribution)

$$X_1, \ldots, X_n, Y \overset{i.i.d.}{\sim} p(\cdot; \theta) = \frac{1}{2}\exp[-|x - \theta|] \quad \theta \in \mathbb{R},$$

where θ is unknown. It is well-known that this model is continuous L^2-differentiable from Hájek conditions (see Bickel, Klaassen, Ritov, Wellner (1993), p. 460, Proposition 4, Corollary 1). By the L^1-derivative $\hat{p}_\theta(x) = \text{sgn}(x - \theta)\frac{1}{2}\exp[-|x - \theta|]$, Fisher’s information of X_i is $I_{X_i}(\theta) = 1$. Since
random variables X_i ($i = 1, \ldots, n$) are mutually independent, we have $I_X(\theta) = n$, $C(\theta) = -1$. Hence we obtain the inequality

$$E_\theta(Y - T(X))^2 \geq 2 + \frac{1}{n}.$$

For an unbiased predictor $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, we have

$$E_\theta(Y - \bar{X})^2 = 2 + \frac{2}{n}.$$

Therefore, MSE (mean square error) between \bar{X} and Y attains the lower bound asymptotically. Note that the sample median \hat{Y}_0 has asymptotically smaller MSE than that of the sample mean:

$$E_\theta(Y - \hat{Y}_0)^2 = 2 + \frac{1}{n} \left(1 + \frac{2\sqrt{2}}{\sqrt{\pi} n} + o \left(\frac{1}{\sqrt{n}}\right)\right).$$

Example 2. (Gamma Distribution)

$$X_1, \ldots, X_n, Y \overset{i.i.d.}{\sim} p(\cdot; \gamma, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} (\cdot - \gamma)^{\alpha-1} e^{-\beta(\cdot - \gamma)} \quad (\cdot > \gamma),$$

where $\beta > 0$, $-\infty < \gamma < +\infty$ are unknown and α is known, i.e., $\theta = (\beta, \gamma) \in \Theta$. In view of Lemma 5.10, restricting $\alpha > 2$, this model is continuous L^2-differentiable. Let $X = (X_1, \ldots, X_n)$. Since $I_{X_i}(\theta) = \left(\frac{\frac{\alpha}{\beta^2}}{-1} \frac{-1}{\beta^2} \right)$ and X_i ($i = 1, \ldots, n$) are independent, Fisher’s information matrix of X is $I_X(\theta) = n \left(\frac{\frac{\alpha}{\beta^2}}{-1} \frac{-1}{\beta^2} \right)$. Hence, we have $I_X^{-1}(\theta) = \left(\frac{\frac{\alpha}{\beta^2}}{2n} \frac{\frac{\alpha}{\beta^2}}{1} \frac{1}{\beta^2}\right)$ and $C(\theta) = \left(\frac{\frac{\alpha}{\beta^2}}{-1}\right)$. Finally, we obtain the following inequality for MSE.

$$E_\theta(T(X) - Y)^2 \geq E_\theta(Y - g(X : \theta))^2 + C(\theta)' I_X^{-1}(\theta) C(\theta)$$

$$= \left(1 + \frac{1}{n}\right) \frac{\alpha}{\beta^2}.$$

Subsequently, we consider the statistics of Theorem 3.4. Since $g(X : \theta) = \gamma + \frac{\alpha}{\beta}$ and $C(\theta)' I_X^{-1}/\theta(X) = \gamma + \frac{\alpha}{\beta} - \bar{X}$, we have the predictor $T_1(X) = \bar{X}$. This predictor T_1 is unbiased and does not depend on θ. Hence MSE of $T_1(X)$ and Y coincides with this lower bound. Actually,

$$E_\theta(Y - \bar{X})^2 = E_\theta(Y - E_\theta(Y))^2 + E_\theta(\bar{X} - E_\theta(Y))^2$$

$$= \left(1 + \frac{1}{n}\right) \frac{\alpha}{\beta^2}.$$
Example 3. (AR(1)) Suppose that
\[U_{i+1} = \rho U_i + \epsilon_i, \]
where \(U_1, \epsilon_i \quad (i = 1, \ldots, n) \) are i.i.d. according to Double Exponential Distribution with the expected value 0 and the known standard deviation \(\sigma \), and \(|\rho| < 1 \) is unknown. Let \(U_1, \ldots, U_n \) be observations and \(U_{n+1} \) be an unknown random variable. It holds from Example 5 that the family \((\sqrt{p_\rho(u_1, \ldots, u_{n+1}))} \) is \(L^2 \)-differentiable.

First, we consider the inequality for this model. Since \(\frac{\partial}{\partial \rho} E_\rho(U_{n+1} \mid U_n) = U_n \), we have \(C(\theta) = E\{ \frac{\partial}{\partial \rho} E_\rho(U_{n+1} \mid U_n) \} = 0 \). Hence it follows from Theorem 3.2 that for any unbiased predictor \(\hat{U} \),
\[E_\rho(U_{n+1} - \hat{U})^2 \geq \sigma^2. \]

Second, we consider the following estimator for \(\rho \):
\[\hat{\rho} = \frac{\sum_{i=1}^{n-1} U_{i+1}U_i}{\sum_{i=1}^{n} U_i^2}, \]
which is called Yule Waker estimator. It is known that this estimator is bounded; \(|\hat{\rho}| \leq 1 \) (see Nakatuka (1978) p. 247).

It follows that \(\hat{\rho} - \rho = -\rho \frac{U_n^2}{\sum_{i=1}^{n} U_i^2} + \frac{1}{n} \sum_{i=1}^{n} U_i^2 \to \sigma^2 \frac{1}{1-\rho^2} \) and \(\frac{1}{n} \sum_{i=1}^{n} U_i \epsilon_i \to 0 \), we have \(\hat{\rho} \overset{P}{\to} \rho \). From the boundedness of \(\hat{\rho} \), we have
\[E_\rho|\hat{\rho} - \rho|^m \to 0 \quad (n \to \infty) \quad \text{for every} \quad m \geq 1. \]

See T. Nakatuka (1978) p. 247. Now we consider a predictor \(\hat{U}_1 = \hat{\rho}U_n \).
It is verified that \(\hat{U}_1 \) is an unbiased predictor since \(\hat{U}_1 \) is an odd function. Applying the Cauchy-Schwarz inequality and (3.4), we have the following
\[E_\rho[U_{n+1} - \hat{\rho}U_n]^2 = E_\rho[U_{n+1} - \rho U_n]^2 + E_\rho(\hat{\rho} - \rho)^2 U_n^2 \]
\[\leq \sigma^2 + \sqrt{E_\rho(\hat{\rho} - \rho)^4} \sqrt{E_\rho U_n^4} \]
\[= \sigma^2 + o(1). \]

Example 4. (Linear model)
\[Y_i = \alpha + \beta X_i + \epsilon_i \quad (i = 1, \ldots, n, n+1), \]
where \(\epsilon_i(i = 1, \ldots, n+1) \) i.i.d. Double Exponential Distribution with the mean 0 and the known standard deviation \(\sigma \), i.e., \(f(\cdot) = \frac{1}{\sqrt{2\sigma}} \exp[-\frac{\sqrt{2}}{\sigma} \cdot \|] \), and \(X_i \) i.i.d. \(N(\mu, 1) \). Suppose that \(\epsilon_i \) and \(X_i(i = 1, \ldots, n) \) are mutually
independent, \(\sigma \) is known, and \(\alpha, \beta, \mu \) are unknown. Now we consider the problem predicting \(Y_{n+1} \) based on \((X_1, Y_1), \ldots, (X_n, Y_n), X_{n+1} \).

Let \(X := \{(X_1, Y_1), \ldots, (X_n, Y_n), X_{n+1}\} \), \(Y := Y_{n+1} \) and the joint density of \((X, Y)\) be \(p_\theta(x, y) \). It follows from Theorem 4.2 that the family \((\sqrt{p_\theta(x_i, y_i)})\) is \(L^2 \)-differentiable since \((\sqrt{p_\theta(y_i \mid x_i)})\) is \(L^2 \)-differentiable in measure \(P_\theta^X \times \nu \) and \((\sqrt{p_\theta(x_i)})\) is \(L^2 \)-differentiable. Hence this model satisfies the conditions of Theorem 3.2. First, we establish the lower bound for \(H \). Since \(F \) satisfies the conditions of Theorem 3.2. First, we establish the lower bound for \(H \).

Similarly, we have

\[
E_\theta(Y - T(X))^2 \geq \left(1 + \frac{1}{2n}\right) \sigma^2.
\]

Here we consider an unbiased predictor of \(Y_{n+1} \). Since the conditional expectation of \(Y \) given \(X \) is \(g(X : \theta) = \alpha + \beta X_{n+1} \), we have a predictor \(\hat{Y} = \hat{\alpha} + \hat{\beta} X_{n+1} \), substituting LSE \(\hat{\alpha}, \hat{\beta} \) for \(\alpha, \beta \) based on \((X_i, Y_i)(i = 1, \ldots, n)\). Note that \(\hat{Y} \) is unbiased since \(\hat{\alpha} \) and \(\hat{\beta} \) are unbiased estimators of \(\alpha \) and \(\beta \) respectively. Let \(\bar{X} := (X_1, \ldots, X_n, X_{n+1}) \) and \(S_{XX} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \).

\[
E_\theta(Y - \hat{Y})^2 = E_\theta(Y - g(X : \theta))^2 + E_\theta(g(X : \theta) - \hat{Y})^2 = \sigma^2 + V_\theta(\hat{\alpha}) + 2E_\theta(X_{n+1})Cov(\hat{\alpha}, \hat{\beta}) + E_\theta(X_{n+1}^2) V_\theta(\hat{\beta}).
\]

Applying the conditional variance of \(\hat{\alpha} \) given \(\bar{X} \), we have

\[
V_\theta(\hat{\alpha}) = E_\theta^\bar{X}\{E_\theta(\hat{\alpha} - \alpha)^2 \mid \bar{X}\} = E_\theta^\bar{X}\left\{\sigma^2 \left(\frac{1}{n} + \frac{\bar{X}}{S_{XX}}\right)\right\} = \frac{\sigma^2}{n-3}\left(1 - \frac{2}{n} + \mu^2\right).
\]

Similarly, we have

\[
V_\theta(\hat{\beta}) = \frac{\sigma^2}{n-3}
\]

\[
Cov(\hat{\alpha}, \hat{\beta}) = -\frac{\sigma^2 \mu}{n-3}.
\]

Finally, MSE of \(\hat{Y} \) is as follows. Hence, it attains the lower bound asymptotically.

\[
E_\theta(Y - \hat{Y})^2 = \sigma^2 + \frac{2\sigma^2(n-1)}{n(n-3)} \left(1 + \frac{1}{2n}\right) \sigma^2 + O\left(\frac{1}{n}\right).
\]
4. Properties of L^2-differentiability

In this section, we describe some properties of L^2-differentiability. We use the same notations as in the previous section. It is sometimes not an easy matter to check L^2-differentiability for the model where an unknown random variable Y and an observation X are not independent. Here we shall state and prove the useful Theorems.

Theorem 4.1. Suppose that the family $(\sqrt{p_{\theta}(x, y)})$ is L^2-differentiable. Then the family $(\sqrt{p_{\theta}(y \mid x)})$ is L^2-differentiable in measure $P_{\theta}^X \times \nu$ with the L^2-derivative

$$
\dot{s}_\theta(y \mid x) = \left(\frac{\dot{s}_\theta(x, y)}{s_\theta(x)} - \frac{s_\theta(x, y)}{s_\theta(x)^2} \dot{s}_\theta(x) \right) 1_{[p_\theta(x) > 0]}.
$$

Theorem 4.2. Suppose that the family $(\sqrt{p_{\theta}(y \mid x)})$ is L^2-differentiable in measure $P_{\theta}^X \times \nu$ and $(\sqrt{p_{\theta}(x)})$ is L^2-differentiable. Then the family $(\sqrt{p_{\theta}(x, y)})$ is L^2-differentiable with the L^2-derivative

$$
(4.1) \quad \dot{s}_\theta(x, y) = \dot{s}_\theta(y \mid x) \sqrt{p_\theta(x)} + \sqrt{p_\theta(y \mid x)} \dot{s}_\theta(x).
$$

In some cases, it is inconvenient to check L^2-differentiability of $(\sqrt{p_{\theta}(y \mid x)})$ in measure $P_{\theta}^X \times \nu$ even if $(\sqrt{p_{\theta}(y \mid x)})$ is L^2-differentiable in measure ν. The following theorem gives the sufficient condition of L^2-differentiability in measure $P_{\theta}^X \times \nu$. This result is stated by Strasser (1998) Theorem 3.4, p. 120. Suppose that for every $x \in \mathcal{X}$, the family $(\sqrt{p_{\theta}(y \mid x)})$ is L^2-differentiable in measure ν, i.e.,

$$
\int |s_{\theta+h}(y \mid x) - s_\theta(y \mid x) - (\dot{s}_\theta(y \mid x), h)|^2 d\nu = o(|h|^2) \quad \text{for every } \theta.
$$

Note that we shall use the same notation $\dot{s}_\theta(y \mid x)$ for the L^2-derivative in measure $P_{\theta}^X \times \nu$ as well as for the L^2-derivative in measure ν. For the following theorem, we consider continuous L^2-differentiability instead of mere L^2-differentiability. We denote Fisher’s information matrix with respect to ν by $I_Y(x, \theta) := 4 \int \dot{s}_\theta(y \mid x) \dot{s}_\theta(y \mid x) d\nu$. Let $I_Y(x, h, \theta) := I_Y(x, \theta + h)$. $I_Y(x, h, \theta)$ is called to be uniformly P_{θ}^X-integrable if $\lim_{M \to \infty} \sup_h \int_{I_Y(x, h, \theta) > M} |I_Y(x, h, \theta)| dP_{\theta}^X = 0$ for every $\theta \in \Theta$. Of course, $I_Y(x, h, \theta)$ is uniformly P_{θ}^X-integrable if there exists a function $H_h(x : \theta)$ such that $I_Y(x, h, \theta) \leq H_h(x : \theta)$ a.e. P_{θ}^X and $\int H_h(x : \theta) dP_{\theta}^X \to \int H(x : \theta) dP_{\theta}^X$ as $|h| \to 0$.

Theorem 4.3. For every $x \in \mathcal{X}$, let the family $(\sqrt{p_{\theta}(y \mid x)})$ is continuous L^2-differentiable in measure ν with Fisher’s Information matrix.
\(I_{Y|x}(\theta) \) with respect to \(\nu \). If the family of functions \(I_{Y|x,h}(\theta) \) is uniformly \(P_\theta^X \)-integrable then the family \((\sqrt{p_\theta(y|x)}) \) is continuous \(L^2 \)-differentiable in measure \(\nu \times P_\theta^X \).

Example 5. (AR(1))

\[
U_{i+1} = \rho U_i + \varepsilon_i \quad i = 1, \ldots, n,
\]

where \(|\rho| < 1\) is unknown and \(U_1, \varepsilon_i \) \(i = 1, \ldots, n \) are i.i.d. with common known density \(f(\cdot) \). \(U_{i+1} | U_i \) denotes the conditional random variable of \(U_{i+1} \) given \(U_i \). Suppose that the family \((\sqrt{f(u_{i+1} - \rho u_i)}) \) is continuous \(L^2 \)-differentiable in Lebesgue measure \(\mu_{i+1} \) and Fisher’s information matrix \(I_{U_{i+1}U_i}(\theta) \) with respect to \(\mu_{i+1} \) is uniformly \(P_{U_{i+1}}^\rho \)-integrable. Since \(U_2 | U_1 \) has densities \(f(\cdot - \rho u_1) \) which is \(L^2 \)-differentiable in measure \(\mu_2 \times P_\rho^U \). The densities of \(U_1 \) are also \(L^2 \)-differentiable. By applying Theorem 4.2, the joint densities of \((U_2, U_1) \) are \(L^2 \)-differentiable in measure \(\mu_2 \times \mu_1 \). Repeating this process inductively, we have that the joint densities of \((U_1, \ldots, U_{n+1}) \) are \(L^2 \)-differentiable.

5. **Proof.**

Lemma 5.1. Suppose that \(M \) is a \((p + q) \times (p + q)\) nonnegative symmetric matrix

\[
M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix},
\]

where \(M_{11} \) is \(p \times p \), \(M_{22} \) is \(q \times q \), and \(M_{22} \) has an inverse matrix. Then the following inequality holds.

\[
M_{11} \geq M_{12}M_{22}^{-1}M_{21}.
\]

Proof of Lemma 5.1. Putting \(P = \begin{pmatrix} E_p & -M_{12}M_{22}^{-1} \\ 0 & M_{22}^{-1} \end{pmatrix} \), where \(E_p \) is a \(p \times p \) unit matrix, we have

\[
PMPP' = \begin{pmatrix} M_{11} - M_{12}M_{22}^{-1}M_{21} & 0 \\ 0 & E_q \end{pmatrix} \geq 0.
\]

Therefore, \(M_{11} - M_{12}M_{22}^{-1}M_{21} \geq 0 \). \(\square \)

Lemma 5.2. Let the family \((\sqrt{p_\theta(x)}) \) be \(L^2 \)-differentiable and \(\phi_\theta(X) \) be a function such that \(E_{\theta_0}\phi_\theta(X)^2 \) is bounded for every \(\theta \) in some neighbourhood of every fixed \(\theta_0 \in \Theta \). Then, it follows

\[
\int \phi_{\theta+h}(x)|p_{\theta+h}(x) - p_\theta(x) - (\hat{p}_\theta(x), h)|d\mu = o(|h|).
\]
Proof of Lemma 5.2. The above assertion is proved by the same argument as Ibragimov and Has’minskii (1981), Theorem 7.2. It is sufficient to verify in one dimension parameter case.

\[\int \phi_{\theta+h}(x) \left| \frac{p_{\theta+h}(x) - p_{\theta}(x)}{h} - \tilde{\phi}'(x) \right| d\mu \]

\[= \int \phi_{\theta+h}(x) \left| \left(\sqrt{p_{\theta+h}(x)} + \sqrt{p_{\theta}(x)} \right) \frac{\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)}}{h} - 2 \sqrt{p_{\theta}(x)} \tilde{s}_{\theta}(x) \right| d\mu \]

\[(5.1) \leq \int \phi_{\theta+h}(x) \left| \left(\sqrt{p_{\theta+h}(x)} + \sqrt{p_{\theta}(x)} \right) \frac{\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)}}{h} - \tilde{s}_{\theta}(x) \right| d\mu \]

\[+ \int \phi_{\theta+h}(x) |\tilde{s}_{\theta}(x)| \left| \sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} \right| d\mu. \]

\[(5.1) \text{ does not exceed} \]

\[(E_{\theta+h}^{1/2} \phi_{\theta+h}(X))^2 + E_{\theta}^{1/2} \phi_{\theta+h}(X)^2 \left(\int \left| \frac{\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)}}{h} - \tilde{s}_{\theta}(x) \right|^2 d\mu \right)^{1/2} \]

\[(5.2) \text{ is bounded above by} \]

\[\left(\int \phi_{\theta+h}(x)^2 (p_{\theta+h}(x) + p_{\theta}(x)) d\mu \right)^{1/2} \]

\[\times \left(\int_{|\phi_{\theta+h}(x)| > 1/(\sqrt{|h|})} |\tilde{i}_{\theta}(x)|^2 dP_{X}^{\theta} \right)^{1/2} \]

\[+ \frac{1}{2} \int_{\theta}^{1/2} \left(\frac{1}{|h|} \int \left(\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} \right)^2 d\mu \right)^{1/2}. \]

Since the probability measure \(P_{\theta}(|\phi_{\theta+h}(x)| > 1/|h|) \leq \sqrt{|h|} E_{\theta}|\phi_{\theta+h}(X)| \to 0 \)

as \(|h| \to 0), (5.3) \text{ tends to } 0 \text{ as } |h| \to 0. \text{ Hence } (5.2) \to 0 \text{ as } |h| \to 0. \text{ Thus we obtain the assertion.} \]

Lemma 5.3. Suppose that the family \(\left(\sqrt{p_{\theta}(x)} \right) \text{ is partial } L^{2}- \text{differentiable and } T(X) \text{ is a statistics with } E_{\theta}T(X)^2 < \infty \text{ for every } \theta. \text{ Then,} \)

\[\frac{\partial}{\partial \theta} E_{\theta}T = \frac{\partial}{\partial \theta} \int T(x)p_{\theta}(x)d\mu = \int T(x)p_{\theta}(x)d\mu, \]

where \(\tilde{p}_{\theta} \) is the row vector of partial \(L^{1} \)-derivatives.
Proof of Lemma 5.3. Putting \(T(X) = \phi_{\theta+h}(X) \), the assertion is proved from Lemma 5.2. □

Remark 5.4 Setting on \(T(X) = 1 \), we have
\[
E_{\theta}[\dot{l}_{\theta}(X)] = \int \dot{p}_{\theta}(x) d\mu = 0.
\]

Proof of Theorem 3.1. It follows that
\[
E_{\theta}(Y - T(X))^2 = E_{\theta}(Y - g(X : \theta))^2 + E_{\theta}(g(X : \theta) - T(X))^2.
\]

We shall consider the lower bound in the second term of (5.4) because the first term does not include a predictor \(T \). Let \(S(X; \theta) = (g(X : \theta) - T(X)) \). By Remark 5.4 and unbiasedness of \(T \), we have
\[
E_{\theta}(S(X; \theta)) = 0.
\]

Let the covariance matrix of \(S(X; \theta) \) be \(Z(\theta) \), we have
\[
Z(\theta) = E_{\theta}[S(X; \theta)S(X; \theta)']
\]
\[
= E_{\theta} \left[g(X : \theta) - T(X) \right] \left[g(X : \theta) - T(X) \dot{l}_{\theta}(X)' \right]
\]
\[
= \begin{pmatrix}
E_{\theta}(g(X : \theta) - T(X))^2 & E_{\theta}(g(X : \theta) - T(X))\dot{l}_{\theta}(X)'
\end{pmatrix}.
\]

In view of Lemma 5.3 and unbiasedness of \(T(X) \), it follows that
\[
E_{\theta}T(X)\dot{l}_{\theta}(X)'
\]
\[
= \int T(x)\dot{p}_{\theta}(x)'d\mu
\]
\[
= \left(\frac{\partial}{\partial\theta} \int T(x)p_{\theta}(x)d\mu \right)'
\]
\[
= \left(\frac{\partial}{\partial\theta} E_{\theta}(Y) \right)'.
\]

Hence, we have
\[
E_{\theta}(g(X : \theta) - T(X))\dot{l}_{\theta}(X)'
\]
\[
= E_{\theta}[g(X : \theta)\dot{l}_{\theta}(X)'] - \left(\frac{\partial}{\partial\theta} E_{\theta}(Y) \right)'
\]
\[
= C(\theta)'
\]
and
\[
E_{\theta}\dot{l}_{\theta}(X)\dot{l}_{\theta}(X)' = I(\theta).
\]
Therefore, we obtain

\[Z(\theta) = \begin{pmatrix} E_\theta(g(X : \theta) - T(X))^2 C(\theta)' \\ C(\theta) \end{pmatrix} C(\theta)^{-1} I(\theta). \]

Since \(Z(\theta) \) is a nonnegative symmetric matrix, it follows from Lemma 5.1 that

\[E_\theta(g(X : \theta) - T(X))^2 \geq C(\theta)' I^{-1}(\theta) C(\theta). \]

Hence,

\[E_\theta(Y - T(X))^2 \geq E_\theta(Y - g(X : \theta))^2 + C(\theta)' I^{-1}(\theta) C(\theta). \]

Thus we have the assertion. \(\square \)

Secondly, we shall state \(L^2 \)-differentiability of the conditional densities of \(Y \) given \(X \). For the proof of Theorem 4.1, we need the following lemmas. From now on, we denote the set \(\{ x; \rho_\theta(x) > 0 \} \) by \(A_\theta \).

Lemma 5.5. Suppose that the family \((\sqrt{\rho_\theta(x,y)}) \) is \(L^2 \)-differentiable, then

\[\int \int |\sqrt{\rho_{\theta+h}(y \mid x)} - \sqrt{\rho_\theta(y \mid x)}|^2 dP_\theta^X d\nu = O(|h|^2). \]

Lemma 5.6. Suppose that the family \((\sqrt{\rho_\theta(x,y)}) \) is \(L^2 \)-differentiable. Let \(T(X) \) be a statistics with \(E_\theta|T(X)| < \infty \). Then,

\[\lim_{|h| \to 0} \int \int T(X)|\sqrt{\rho_{\theta+h}(y \mid x)} - \sqrt{\rho_\theta(y \mid x)}|^2 dP_\theta^X d\nu = 0. \]

Proof of Lemma 5.5.

\[
\begin{align*}
\int_Y \int_{A_{\theta+h} \cap A_\theta} |\sqrt{\rho_{\theta+h}(y \mid x)} - \sqrt{\rho_\theta(y \mid x)}|^2 dP_\theta^X d\nu &= \int_Y \int_{A_{\theta+h} \cap A_\theta} |\sqrt{\rho_{\theta+h}(x,y)} \frac{\rho_\theta(x)}{\rho_{\theta+h}(x)} - \sqrt{\rho_\theta(x,y)}|^2 d\mu d\nu \\
&\leq \int \int |\sqrt{\rho_{\theta+h}(x,y)} - \sqrt{\rho_\theta(x,y)}|^2 d\mu d\nu \\
&\quad + \int_{A_{\theta+h}} |\sqrt{\rho_{\theta+h}(x)} - \sqrt{\rho_\theta(x)}|^2 \left(\int_Y \frac{\rho_{\theta+h}(x,y)}{\rho_{\theta+h}(x)} d\nu \right) d\mu \\
&= O(|h|^2).
\end{align*}
\]

It is clear that \(\int \int_{X-A_\theta} |\sqrt{\rho_{\theta+h}(y \mid x)} - \sqrt{\rho_\theta(y \mid x)}|^2 dP_\theta^X d\nu = 0 \) and \(\int \int_{X-A_{\theta+h}} |\sqrt{\rho_{\theta+h}(y \mid x)} - \sqrt{\rho_\theta(y \mid x)}|^2 dP_\theta^X d\nu = O(|h|^2) \). Hence, we obtain
the assertion. □

Proof of Lemma 5.6.

\[
\iint T(X) \left| \sqrt{p_{\theta+h}(y \mid x)} - \sqrt{p_{\theta}(y \mid x)} \right|^2 dP^X_{\theta} d\nu
\]

\[
= \iint_{|T(X)|>1/(\sqrt{|h|})} T(X) \left| \sqrt{p_{\theta+h}(y \mid x)} - \sqrt{p_{\theta}(y \mid x)} \right|^2 dP^X_{\theta} d\nu
\]

\[
+ \iint_{|T(X)|\leq1/(\sqrt{|h|})} T(X) \left| \sqrt{p_{\theta+h}(y \mid x)} - \sqrt{p_{\theta}(y \mid x)} \right|^2 dP^X_{\theta} d\nu
\]

\[
\leq 2 \int |T(X)| dP^X_{\theta}
\]

\[
+ \frac{1}{|h|} \iint \left| \sqrt{p_{\theta+h}(y \mid x)} - \sqrt{p_{\theta}(y \mid x)} \right|^2 dP^X_{\theta} d\nu.
\]

Using Lemma 5.5, we have the assertion. □

Proof of Theorem 4.1. Assume without loss of generality that \(\theta \in \Theta \) is one dimensional parameter.

\[
\iint_{A_{\theta} \cap A_{\theta+h}} \left| \frac{\sqrt{p_{\theta+h}(y \mid x)} - \sqrt{p_{\theta}(y \mid x)}}{h} \right|^2 dP^X_{\theta} d\nu
\]

\[
- \left(\frac{s_{\theta+h}(x, y)}{s_{\theta}(x)} - \frac{s_{\theta}(x, y)}{s_{\theta}(x)} \frac{s_{\theta+h}(x)}{s_{\theta}(x)} \frac{\dot{s}_{\theta}(x)}{s_{\theta}(x)} \right)^2 dP^X_{\theta} d\nu
\]

(5.5) \[
\leq 2 \iint \left| \frac{s_{\theta+h}(x, y)}{h} - \frac{s_{\theta}(x, y)}{h} - \dot{s}_{\theta}(x, y) \right|^2 d\mu d\nu
\]

(5.6) \[
+ 2 \iint_{A_{\theta} \cap A_{\theta+h}} \left| \frac{s_{\theta+h}(x)}{h} s_{\theta+h}(y \mid x) - s_{\theta}(y \mid x) \dot{s}_{\theta}(x) \right|^2 d\mu d\nu.
\]

(5.6) is bounded above by

(5.7) \[
4 \int \left| \frac{s_{\theta+h}(x)}{h} - \dot{s}_{\theta}(x) \right|^2 d\mu
\]

(5.8) \[
+ \iint \left| \sqrt{p_{\theta+h}(y \mid x)} - \sqrt{p_{\theta}(y \mid x)} \right|^2 |\dot{l}_{\theta}(x)| dP^X_{\theta} d\nu.
\]

Applying Lemma 5.6, (5.8) tends to 0 as \(|h| \to 0\). In view of \(L^2 \)-differentiability, (5.5) and (5.7) approach 0 as \(|h| \to 0\). Therefore, \(L^2 \)-differentiability of \((\sqrt{p_{\theta}(y \mid x)})\) is proved in the domain of integration \((A_{\theta+h} \cap A_{\theta}) \times \mathcal{Y}\). And it is easily verified that \(L^2 \)-differentiability in the
integral domain \((\mathcal{X} - A_{\theta+h}) \times \mathcal{Y}\), and \((\mathcal{X} - A_{\theta}) \times \mathcal{Y}\). Hence, the assertion is proved.

Theorem 5.7 Suppose that \((P^X_\theta)\) satisfies conditions (ii). Then \(E_\theta(Y \mid X)\) is \(L^1\)-differentiable in measure \(P^X_\theta\) with the derivative

\[
\dot{g}(X \mid \theta) = \int y\dot{p}_\theta(y \mid x) d\nu,
\]

where \(\dot{p}_\theta(y \mid x)\) is the \(L^1\)-derivative. We can easily verify that \(\dot{p}_\theta(y \mid x) = \left(\frac{\dot{p}_\theta(x,y) - p_\theta(x,y)}{p_\theta(x)^2}\right)1_{[p_\theta(x) > 0]}\) if the family \((\sqrt{p_\theta(x,y)})\) is \(L^2\)-differentiable.

Proof of Theorem 5.7.

\[
\frac{1}{|h|}\int_{A_\theta \cap A_{\theta+h}} |E_{\theta+h}(Y \mid x) - E_\theta(Y \mid x) - (h, \dot{g}(x \mid \theta))| dP^X_\theta
\]

\[
= \frac{1}{|h|} \int_{A_\theta \cap A_{\theta+h}} \left| \int y[p_{\theta+h}(y \mid x)p_\theta(x) - p_\theta(x,y) - (h, \dot{p}_\theta(y \mid x))\right] d\nu \right| d\mu
\]

\[
\leq \frac{1}{|h|} \int_{A_\theta \cap A_{\theta+h}} \left| \int y[p_{\theta+h}(y \mid x) - p_\theta(x) - (h, \dot{p}_\theta(x))]\right| d\nu \right| d\mu
\]

\[
+ \frac{1}{|h|} \int_{A_\theta \cap A_{\theta+h}} \left| \int y\dot{p}_\theta(y)\right| d\nu \right| d\mu
\]

\[
+ \int_{A_\theta \cap A_{\theta+h}} \left| \int y\dot{p}_\theta(y)\right| d\nu \right| d\mu
\]

Using Lemma 5.2 and Lemma 5.3, (5.10) and (5.11) tend to 0 as \(|h|\to 0\) respectively. By the same argument as Lemma 5.6, (5.12) tends to 0 as \(|h|\to 0\). Hence, (5.9) \(\to 0\) as \(|h|\to 0\). On the other hand, it is clear that \(\int_{\mathcal{X} - A_\theta} |E_{\theta+h}(Y \mid X) - E_\theta(Y \mid X) - (h, \dot{g}(X \mid \theta))| dP^X_\theta = 0\). Further, since \(\dot{p}_\theta(y \mid x)\) is written by \((\dot{p}_\theta(x,y)p_\theta(x) - p_\theta(x,y)\dot{p}_\theta(x))/p_\theta(x)^2\), it holds that

\[
\frac{1}{|h|} \int_{\mathcal{X} - A_{\theta+h}} |E_{\theta+h}(Y \mid x) - E_\theta(Y \mid x) - (h, \dot{g}(x \mid \theta))| dP^X_\theta
\]

\[
\leq \frac{1}{|h|} \int_{\mathcal{X} - A_{\theta+h}} |\dot{g}(x \mid \theta)| dP^X_\theta
\]

\[
\leq o(1) + (E_\theta g(X \mid \theta)^2)^{1/2} \left(\int_{\mathcal{X} - A_{\theta+h}} |\dot{g}(x \mid \theta)|^2 dP^X_\theta\right)^{1/2}
\]

\(\to 0\) as \(|h|\to 0\).
Hence, the theorem is proved.

Lemma 5.8. Under conditions (ii), it follows
\[
\frac{\partial}{\partial \theta} \int g(x : \theta)p_\theta(x)d\mu = \int \dot{g}(x : \theta)p_\theta(x)d\mu + \int g(x : \theta)\dot{p}_\theta(x)d\mu.
\]

Proof of Lemma 5.8.
(5.13) \[
\left| \int \frac{g(x : \theta + h)p_{\theta + h}(x) - g(x : \theta)p_\theta(x)}{h} \right| - \dot{g}(x : \theta)p_\theta(x) - g(x : \theta)\dot{p}_\theta(x)d\mu
\]
(5.14) + \int |g(x : \theta + h)||\frac{p_{\theta + h}(x) - p_\theta(x)}{h} - \dot{p}_\theta(x)|d\mu
(5.15) + \int |g(x : \theta + h) - g(x : \theta)||\dot{p}_\theta(x)|d\mu.

By Theorem 5.7, (5.13) → 0 as \(|h| → 0\). By applying Lemma 5.2, (5.14) → 0 as \(|h| → 0\). (5.15) is bounded above by
(5.16) \[
(E_\theta g(X : \theta + h)^2 + E_\theta Y^2) \int_{|\dot{\theta}(x)|^2 > 1/\sqrt{|h|}} |\dot{\theta}(x)|^2 dP_\theta^X
\]
(5.17) + \frac{1}{\sqrt{|h|}} \int |g(x : \theta + h) - g(x : \theta)|dP_\theta^X.

(5.16) → 0 as \(|h| → 0\) by the same argument as (5.3). Since \(g(X : \theta)\) is \(L^1\)-differentiable, (5.17) → 0 as \(|h| → 0\). Thus the lemma is proved.

Proof of Theorem 3.2. It is sufficient to prove \(C(\theta) = -E_\theta(\dot{g}(X : \theta))\). Since \(T(X)\) is unbiased, \(0 = \int (g(x : \theta) - T(x))dP_\theta^X\). By using Lemma 5.8, it follows that
\[
0 = \frac{\partial}{\partial \theta} \int (g(x : \theta) - T(x))p_\theta(x)d\mu
\]
\[
= \int \dot{g}(x : \theta)p_\theta(x)d\mu + \int (g(x : \theta) - T(x))\dot{p}_\theta(x)d\mu.
\]
Since \(C(\theta) = \int (g(x : \theta) - T(x))\dot{p}_\theta(x)d\mu\), we obtain the assertion.

Lemma 5.9. Suppose that \((\sqrt{p_\theta(y \mid x)})\) is \(L^2\)-differentiable. Let \(T(X)\) be a statistics with \(E_\theta|T| < \infty\). Then, the following assertions hold:

(i) \[
\int \int |\sqrt{p_{\theta + h}(y \mid x)} - \sqrt{p_\theta(y \mid x)}|^2 dP_\theta^Xd\nu = O(|h|^2).
\]
(ii) \[
\lim_{|h| \to 0} \int \int T(X)|\sqrt{p_{\theta + h}(y \mid x)} - \sqrt{p_\theta(y \mid x)}|^2 dP_\theta^Xd\nu = 0.
\]
Proof of Lemma 5.9. (i) is easily verified from the definition of L^2-differentiability. (ii) is proved by the same argument as in the proof of Lemma 5.6.

Proof of Theorem 4.2. It is sufficient to verify in one dimensional parameter case.

\[
\int_{A_\theta \cap A_{\theta+h}} \left| \sqrt{p_{\theta+h}(x, y)} - \sqrt{p_{\theta}(x, y)} \right| h \\
- (s_\theta(y \mid x)\sqrt{p_{\theta}(x)} + \sqrt{p_{\theta}(y \mid x)s_\theta(x)}) \right|^2 d\mu d\nu
\]

\[\leq 3 \int_{A_\theta \cap A_{\theta+h}} \left| \sqrt{p_{\theta+h}(y \mid x)} - \sqrt{p_{\theta}(y \mid x)} \right|^2 dP^X d\nu \tag{5.18}\]

\[+ 3 \int_{A_\theta \cap A_{\theta+h}} \left| \sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} \right|^2 \dot{s}_\theta(x) d\mu d\nu \tag{5.19}\]

\[+ 3 \int_{A_\theta \cap A_{\theta+h}} \left| \dot{s}_\theta(x) \right|^2 \left| \sqrt{p_{\theta+h}(y \mid x)} - \sqrt{p_{\theta}(y \mid x)} \right|^2 d\mu d\nu. \tag{5.20}\]

By the assumption, (5.18) tends to 0 as $|h| \to 0$, and in view of $\int_Y p_{\theta+h}(y \mid x) d\nu = 1$, (5.19) tends to 0 as $|h| \to 0$.

Applying Lemma 5.9, (5.20) tends to 0 as $|h| \to 0$. Therefore, L^2-differentiability of the family $(\sqrt{p_{\theta}(x, y)})$ is proved in the integral domain $(A_{\theta+h} \cap A_\theta) \times Y$. It is verified that $\int_{\mathcal{X} - A_\theta} \left| \frac{\sqrt{p_{\theta+h}(x,y)} - \sqrt{p_{\theta}(x,y)}}{h} - \dot{s}_\theta(x,y) \right|^2 d\mu d\nu = 0$ and $\lim_{|h| \to 0} \int_{\mathcal{X} - A_{\theta+h}} \left| \frac{\sqrt{p_{\theta+h}(x,y)} - \sqrt{p_{\theta}(x,y)}}{h} - \dot{s}_\theta(x,y) \right|^2 d\mu d\nu = 0$.

Hence the assertion is proved.

The following lemma gives sufficient conditions for continuous L^2-differentiability of densities in terms of ordinary differentiability of the likelihood. This result is proved by Bickel, Klaasen, Ritov and Wellner (1993), Proposition 1, p. 13.

Lemma 5.10. Suppose that Θ is open, and that for all θ

(a) $p_\theta(x)$ is continuous differentiable in θ for μ almost all x with gradient $\dot{p}_\theta(x)$.

(b) $|\dot{l}_\theta(x)| \in L^2(P^X_\theta)$ with $\dot{l}_\theta(x)$ as in (2.2).

(c) Fisher’s Information matrix $I(\theta) = \int \dot{l}_\theta(x)\dot{l}_\theta(x)' dP^X_\theta$ is nonsingular and continuous in θ.

Then the parametrization $\theta \rightarrow P^X_\theta$ is continuous L^2-differentiable with the derivative $s_\theta(x)$, where $s_\theta(x) = \frac{\dot{p}_\theta(x)}{2\sqrt{p_\theta(x)}}1_{[p_\theta(x)>0]}$.

Acknowledgements

The author thanks the editor and the referee for their helpful comments which have improved the presentation of the present paper.

References

