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Pulli kolam is a ubiquitous art form drawn afresh every morning on the threshold of most homes in South India.
It involves drawing a line looped around each dot of a collection of dots (pullis) placed on a plane in accordance
with three mandatory rules, namely, all dots should be circumscribed, all line orbits should be closed, and two
line segments cannot overlap over a finite length. The mathematical foundation for this art form has attracted
attention over the years. In this work, we propose a simple 5-step method by which one can systematically draw
all possible kolams for any number of dots N arranged in any spatial configuration on a surface. For a given
N , there exist a set of parent kolams from which all other possible kolams can be derived. All parent kolams
arising from different spatial arrangements of N dots can be classified into parent kolam types; within each type,
all parents are topologically equivalent, or homotopic. The number of kolams for a given N is shown to be
infinite if only the three mandatory rules stated above are followed; it becomes finite as more optional rules and
restrictions are imposed. This intuitive method can be mastered by anyone to create countless kolams with no
prior knowledge or the need for a detailed mathematical understanding. It is also amenable to developing apps
and educational games that introduce the concepts of symmetry and topology.
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1. What is a Kolam?
Figure 1 depicts an example of a kolam, an ancient and

still popular South Indian art form. This particular type of
kolam is called the pulli kolam in Tamil, which consists of
a series of dots (called pullis) placed on a surface, each of
which is then circumscribed by lines that form closed or-
bits. It is a very common sight on the threshold of homes
in the five southern states with a combined current popula-
tion of ∼252 million. They are called by varied names in
the respective regional languages of these states: kolam in
Tamil spoken in Tamil Nadu, golam in Malayalam spoken
in Kerela, rangole in Kannada spoken in Karnataka, and
muggulu in Telugu spoken in Andhra Pradesh and Telan-
gana. With every sunrise, women wash the floor in front
of the houses, and using rice flour, place the dots and draw
a kolam largely from memory. Learning how to draw ko-
lams from an early age is an important aspect of growing
up in southern India, especially for girls. As they continue
to learn from other women in their family, the kolams be-
come increasingly complex, with a larger number of dots
and more intricate line orbits. Remembering the dot con-
figurations and line orbits is a daily exercise in geometric
thinking. The process is immensely pleasurable, especially
when a kolam is successfully completed with no loose ends.

While the conventional kolams impose several rules, here
we begin with three simple rules in order to give ourselves
greater room for discovery and creativity. Given an arbi-
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trary arrangement of dots on a plane, the following three
mandatory (M) rules define a kolam:
M1: All dots should be circumscribed.
M2: All interactions between two lines must be at points,
i.e. two line segments cannot overlap over a finite length.
M3: All line orbits should be closed, i.e. no loose ends.

In addition to the above rules, one may choose to apply
additional optional (O) rules. There is no limit to the num-
ber of such optional rules that can be followed, but we will
explore some of them later in this work.

While kolams are widely rendered from memory, the
process of creating entirely new ones, especially complex
kolams with a large number of dots is far more challenging.
This work attempts to provide a simple 5-step method by
which anyone can create a very large number of kolams
from any arbitrary pattern of dots. The proposed topological
method deemphasizes memory; in principle, anyone who
knows just the method will be able to draw a large number
of kolams with no other prior knowledge.

Many previous pioneering works exist that have provided
mathematical insights into the form of a kolam over the past
four decades. These include converting kolams into num-
bers and linear diagrams [1], using graph, picture, and ar-
ray grammers [2–10], extended pasting schemes [11], mor-
phism of monoids [12], L- and P-systems [13,14], gestural
lexicons [15], knot theory [16], and mirror curves [17]. Of
these, the work of Yanagisawa and Nagata [1], has similar-
ities to this work. They begin with 5 rules for kolam, define
square unit tiles that can be assembled into larger kolams,
define two types of nearest neighbor interactions between
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Fig. 1. Example of a pulli kolam called Brahma’s knot.

Fig. 2. Examples of kolams around one dot that follow the mandatory
rules M1–M3. An infinite number of kolams are possible. Additional
optional (O) rules, O1–O6, can limit the number allowed.

dots (line crossing, 1, or uncrossing, 0) and convert these
tiles into binary number arrays. Nagata [18] also addressed
the construction of a primitive kolam for an arbitrary dot ar-
ray with a similar approach. In contrast, the work presented
here has a purely topological approach: it defines only 3
mandatory rules for defining a kolam, has no standard tiles,
generalizes the ideas to any arbitrary arrangement of dots
arranged in any shape (not necessarily square arrays), gen-
eralizes to interactions between any two dots (instead of
only the nearest or next nearest neighbors), and to three or
more number of bonds between an interacting pair of dots.
The work suggests that for a given number of dots, N , there
are a limited number of parent kolam types from which all
other kolams originate. All parent kolams within a parent
kolam type are homotopic (or topologically equivalent).

2. How Many kolams for One Dot (N = 1)?
Figure 2 depicts a single dot, and a variety of lines cir-

cumscribing it that follow the three mandatory rules men-
tioned above. The kolam in general could be amorphous in
shape, as in Fig. 2a, and in the special case of Fig. 2b is a
circle. Multiple circumscriptions around the dot are possi-
ble, as in Figs. 2c, d, and e.

It becomes immediately clear from Fig. 2 that the number
of possible kolams thus defined, with only the mandatory
rules, is infinite. One may arbitrarily impose additional
optional (O) rules to limit the number of kolams. Here are
some:
O1: Only one circumscription of the line is allowed around

Fig. 3. Infinitely many types of bonds are possible between a pair of dots
that follow the rules M1, M2, M3, and optional rules O1 and O2, three
of which are shown here.

Fig. 4. Illustrating the construction of a kolam in 5 steps plus optional
rule O3: The procedure is shown for N = 2 (2 dots) and J = 5 (5
junctions). If each junction is restricted have one of 3 types of bonds
(X-, D-, or B-), it can lead to 35 = 243 possible kolams. One of these
options, namely, B-D-X-D-B, is shown in the figure in Step 4. In the
optional rule, the dots have been rearranged as an example of rule O3
after the kolam is drawn in Step 5.

each dot.
O2: A line circumscribing a dot should be as resourceful
(simple) as possible, without additional unnecessary wig-
gles or flourishes (e.g. Fig. 2b is resourceful vs. Fig. 2a is
not).
O3: While a kolam may be created by a minimum number
of dots N needed for the 5-step method proposed below,
one can then eliminate dots from, or add dots to, or move
dots in a kolam after it has been drawn, provided the process
does not violate the mandatory rules. The final kolam may
thus appear to have N f inal dots, where N f inal may or may
not be equal to N .

With O1 restriction, only 2a and 2b survive. With O1
and O2, only 2b will survive. Figure 2e, depicting a Star
of David is a common kolam, which apparently is elimi-
nated by O1. However, this kolam can also be generated by
placing six dots (N = 6), one inside each ray of the star,
and following the 5-step method proposed below. The 6
dots may later be erased, and one dot placed in the middle
(N f inal = 1) according to O3 to generate Fig. 2e. Another
example is the Brahma’s knot in Fig. 1, which can be gener-
ated by only N = 25 dots. However, Fig. 1 has N f inal = 33
dots; the additional two horizontal rows of 4 dots each (to-
tal of 8 dots) in that kolam would be placed (according to
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Fig. 5. Two possible parent kolams for 3-dots (N = 3) and J = 1. The intermediate structure shows how one can distort parent 1 into parent 2,
demonstrating that they are homotopic.

Fig. 6. The 27 kolams generated from 3 dots (N = 3) and J = 1. There are 3 possible pairs of dots. The notation, B2X (3), for example indicates
that two of the pairs have broken-bonds and one pair has a cross-bond. The (3) in the end indicates that three such kolams of the same type exist,
generated by the permutation of the X-bond between the three pairs in the case of B2X.

O3) after constructing the kolam with only 25 dots by the
method proposed below.

3. Method to Construct kolams for an Arbitrary Ar-
rangement of N Dots

First, we define several types of bonds (b) between a
pair of dots, as shown in Fig. 3. The X- and the B-bonds
were discussed in Yanagisawa and Nagata [1] and they were
indexed as a line crossing, 1, or an uncrossing, 0. The D-
bond corresponds to additional variation (a type of two-dot
joining, indexed as 2) over the pictorial code proposed by
Nagata [18]. In general, there are infinitely many possible
bond types but we will focus here only on the cross (X)-
bond, the double (D)-bond, and the broken (B)-bonds (b =
3) in this work.

Next, we propose a 5-step method to build all possible ko-
lams for an arbitrary pattern of N dots in two-dimensions.
These rules are illustrated for a simple 2-dot (N = 2) case
in Fig. 4.
Step 1: Place the dots in any configuration of your choice
in 2-dimensions.
Step 2: Draw a perpendicular bisector line segment between
every pair of dots in the general case of following only rules
M1–M3. (More generally, this line segment does not need
to be a bisector, and does not need to lie between the two
dots.) While the bisector is a line separating the two dots,
the N-line used by Nagata [18] was used for connecting or
bonding these dots. A line crossing on this N-line by Nagata
[18] has analogies to the junction point on the bisector.
Step 3: Draw closed ghost-like figures around each dot,
which we will playfully call squishies, suggesting that they
are freely deformable. There will be N squishies for N dots.
Each squishy will have J arms that touch a corresponding

Fig. 7. The above kolam on the left might appear to be a 3 dot kolam.
However, it is an N = 4 dot kolam (above right) created using the
5-step method described above. By erasing the center dot in the right
kolam, one can generate the N f inal = 3 kolam according to O3. These
two kolams are not homotopic.

arm from a different squishy pairwise at the bisector line,
leading to J junctions. We will call this structure, the par-
ent kolam. All parent kolams arising from different spatial
arrangements of N dots can be classified into parent kolam
types; within each type, all parents are topologically equiv-
alent, or homotopic, as discussed further on.
Step 4: Now start drawing the kolam from any point on
a squishy, and follow along until you reach a junction.
Then transform that junction into a cross-bond (X-bond),
a double-bond (D-bond), or a broken-bond (B-bond). Con-
tinue in a similar way until you return to the starting point.
If some dots are still not encircled, start a new line from a
squishy around one of those remaining dots, and continue
till you return back to the start of that line. Repeat this pro-
cess till the kolam is complete and all the dots are encircled.
Step 5: Smooth the curves so that the lines are resourceful
according to O2. This will result in a kolam that will obey
the rules M1, M2, and M3.

As an optional rule, you can eliminate any or all dots, or
add new dots, or move the existing dots according to O3. In
addition, one may impose further optional rules to whittle
down the number of kolams:
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Fig. 8. Three types of parent kolams for N = 4 dots and J = 1. Parents 1 and 3 are homotopic and form one parent type. Parent 2 forms a second
parent type.

Fig. 9. Parent kolams 1 and 3 for N = 4 and J = 1 shown in Fig. 8 are demonstrated to be topologically equivalent by continuously deforming parent
1 into 3 in panel (a); hence they form a single parent type. Panel (b) shows that distorting parent 2 in Fig. 8 does not lead to parent 1; hence they are
distinct parent types.

O4: Only the nearest neighbor dots interact through bonds
other than broken bonds. All other bonds are broken.
O5: Only one junction (J = 1) is allowed between one pair
of dots.
O6: Symmetry equivalent junctions in the parent kolam will
have the same type of bonds. To find sets of symmetry
equivalent junctions, visual inspection of possible rotations
axes and mirror symmetries is recommended. For a mathe-
matical approach, find the point group of the arrangement of
dots, and using the symmetry operations of the point group,
see which set of junctions transform into each other.

In general, with rules M1, M2, M3 and optional rules
O1 and O2 in place, with J number of junctions per pair of
dots, N and with b types of bonds allowed (Fig. 3), one can
write the number, K , of possible kolams as

#K olams = K = bJ N (N−1)/2, (1)

where the exponent of b is the number of possible junctions
between all possible pairs of dots. For example, if N = 2
(2 dots), J = 1 (1 junction) and b = 3 (3 bonds), then
K = 3. These 3 kolams are shown in Fig. 3. Obviously, K
gets large very quickly as J , b and N increase. In the rest
of this work, we will restrict ourselves to J = 1 and b = 3.

If the optional rule O6 is imposed in addition, and sym-
metry equivalent junctions identified, let there be g groups,
each containing Sg number of symmetry equivalent junc-
tions, such that

∑
g Sg = J N (N − 1)/2. Then the number

of possible Kolams (Eq. (1)) can be revised as K = bg .
Note that we assert in Step 5 that this procedure will al-

ways result in a kolam that obeys the mandatory rules. This
arises from the rules of construction. The parent kolam is
always drawn in the above steps in such a way as to not
violate the three mandatory (M) rules: all dots are circum-
scribed by squishies and there are no loose ends in the par-
ent kolam. Nor does the transformation of the junctions in
Step 3 violate these rules: the bonds where lines cross, e.g.
the X-bond, cross at a single point per crossing. Hence the
final kolam also follows the minimal mandatory rules M1–
M3.

4. Exploring Kolams with 3 Dots (N = 3)
The number of possible kolams for N = 3 following

rules M1–M3 and optional rules O1, O2, and O5 (J = 1)
can be computed from Eq. (1) as K = 31×3×(3−1)/2 = 33 =
27. Two different parent kolams for N = 3 are shown in
Fig. 5.

Parent 1 places the three dots on a line, while parent 2
places them in a triangle. These two parent kolams are
topologically equivalent, or homotopic. In other words,
a continuous distortion of one structure can result in the
other without cutting or breaking bonds, as shown by a
transformation through the intermediate structure in Fig.
5. Hence, every one of the 27 kolams derived from parent
kolam 1 will have a topologically equivalent cousin kolam
derived from parent kolam 2. Thus we can conclude that for
J = 1, all N = 3 kolams arise from a single parent kolam
type.

The 27 kolams derived from parent kolam 2, with the
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Fig. 10. Four dot (N = 4) kolams derived from the three parents in Fig. 8, under the rules of the rules M1–M3, and optional rules O1 (only one
circumscription per dot), O2 (simplifying the line), O5 (J = 1), and O6 (symmetry equivalent junctions will have the same type of bond). Note that
the parent kolams in this figure have been chosen in the special shapes of a line (parent 1), an equilateral triangle (parent 2) and a square (parent 3).
These choices as well as the optional rules eliminate many kolams that a reader might otherwise be able to visualize.
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Fig. 11. An example of a parent kolam and two children kolams for N = 5 and J = 1.

special case of the 3 dots arranged in an equilateral triangle,
are shown in Fig. 6. Did we find all possible kolams with
N = 3? If so, how about the kolam on the left in Fig.
7? It turns out that this kolam is captured by the proposed
method for N = 4, where an additional dot is placed in
the middle of Fig. 7. This is discussed in the next section.
The example is again illustrative of the fact that a kolam,
once created, is distinctive in its own right, irrespective of
the presence or absence of dots. The characteristic N for
a given kolam may be defined as the minimum number of
dots required for generating the kolam with the above 5-
step method. However, note that when dots are removed or
added to a kolam, the resultant kolams may no longer be
topologically equivalent to the original kolam.

5. Exploring Kolams with 4 Dots (N = 4)
Three different configurations of parent kolams are

shown in Fig. 8 for N = 4.
It is possible to show that parents 1 and 3 are homotopic.

Such equivalence is shown in Fig. 9a, and hence they form a
single parent type. However, parent 2 forms a distinct par-
ent type as shown in Fig. 9b since parent kolams 1 and 2
cannot be distorted into each other without the lines cross-
ing over the dots in two dimensions. The number of pos-
sible kolams for any parent kolam with N = 4 following
rules M1–M3 and O1, O2, and O5 can be computed from
Eq. (1) as K = 31×4×(4−1)/2 = 36 = 729.

The 729 possible kolams from each parent is a large num-
ber, and so we choose here to impose additional restrictions
in order to explore only a subset. For example, optional
rule O6 suggests that symmetry equivalent junctions will
have the same type of bond.

This allows for the symmetry of the parent phase to be
preserved while bonds are formed. The various kolams
derived from three different parent kolams (1, 2, and 3) in
Fig. 8 under the rules of M1–M3 and O1, O2, O5, and O6
are shown in Fig. 10. For parent Kolam 1 in Fig. 10, there
are 3 groups (g = 3) of symmetry equivalent junctions
related by a vertical mirror symmetry. Thus the number
of Kolams with J = 1 is K = 33 = 27. For both the
special cases of parent Kolam 2 (dots forming an equilateral
triangle) and Kolam 3 (dots forming a square), g = 2 arising
from a 3-fold and 4-fold rotational axes respectively, and
hence K = 32 = 9 as shown. We note that B3X3 with
N = 4 captures the kolam that was missed in Fig. 7 by
N = 3.

6. Conclusions
We have demonstrated a method of generating countless

kolams from user-defined dot arrangement on a surface.
This method can be mastered by anyone without the need
to understand the detailed mathematics behind kolams. For
a give number, N , of dots in any spatial arrangement on a
surface, the number of possible kolams that follow only the
mandatory rules M1–M3 is infinite, even for a 1-dot kolam
(N = 1). However, by following additional optional rules
O1 and O2, this number is finite as given by Eq. 1. Addition
of rule O6 modifies this equation.

We show by example that for a given number of dots N ,
a set of parent kolam types exist, from which all possible
kolams can be generated. All parent kolams within a single
type are homotopic. Hence the resultant kolams from these
homotopic parents will also have corresponding homotopic
cousins. Though a rigorous proof for such homotopy in
general has not been presented, it can be argued based on
the method of construction similar to that shown in Fig. 9.

Kolams with higher N get richer and more complicated
quickly. For example, Fig. 11 shows an example parent
kolam for N = 5 and J = 1, and two possible children
kolam arising from it. The readers are encouraged to try
generating other parent and children kolams for this case.

There are several advantages to this simple method:
(1) It is applicable for any number of dots, N .
(2) The dots can be arranged in any configuration in 2-

dimensions.
(3) While the proposed method may not always guaran-

tee aesthetics, it is simple enough for a user to impose addi-
tional aesthetically appropriate optional rules.

(4) A computer program can vary b, J , and N for gener-
ating numerous kolams following the three mandatory rules,
plus any number of user-defined optional rules.

This leads to the possibility of creating an interactive
website or a mobile app that can help a user to generate
kolams at will. Such an app will get the user involved in
the creative process, including young children who may be
introduced to art, symmetry and topology through kolams.
The method is also applicable to generating other similar
patterns such as some of the Chinese and Celtic knots.
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