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When we memorize a form in our mind and remember it after a
few minutes, we can reproduce only a rough sketch of the form
without the details contained in the original pattern. So,
generally speaking, the information involved in a form may be
said to consist of two part : Dominant information and Details.
In the present paper, a method how to extract such a dominant
information from a given form is proposed. It is also shown that
the dominant information of a pattern can be characterized by the
low frequency part of the spectrum of the Fourier descriptors.
The method to get a rough pattern consists of three Kkinds of
mappings : P-transformation, Fourier transformation and Low-pass
filter.

INTRODUCTION

First of all, look at the patterns shown in Fig.l. If vyou
are familiar with a map of Japan, you can easily recognize the
pattern (a) in Fig.1 as Hokkaido which is located in the north
part of Japan. On the other hand, it might be rather difficult
for some of you to recognize the pattern (b) in Fig.l. Because
it is one of chinese characters, i.e. Kanji, which is drawn in a
cursive hand or running style.
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Fig.l Examples of patterns. Fig.2 Rough sketches of Fig.l.

Next, watch the second group of patterns shown 1in Fig.2.
Whether you can recognize the patterns in Fig.l1 or not, you can
see without difficulty that the patterns in Fig.2 are rough
scketches of ones in Fig.l1, respectively. If you are asked to
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memorize the patterns in Fig.l in your mind and to remember them
after a few minutes, then you will reproduce only the rough
scketches, for instance, like ones in Fig.2 without the details
contained in the original patterns.

So, generally speaking, the information contained in a
pattern may be said to consist of two parts

Pattern = Dominant Information + Details. 1)

Only the first part, i.e. the dominant part 1is stored in our
brain and can be used to reproduce a rough pattern. The second
part, i.e. the details which are very difficult to memorize in
our brain. Thus, we can ask what sort of information can
characterize the rough pattern like ones in Fig.2.

The main aim of the present paper is to show a sort of model
of the rough pattern and to give a method how to get such a rough
pattern from a given pattern. As shown later, the spectral
analysis based on the Fourier transformation plays an important
role to build up a rough pattern model.

1. P-EXPRESSION OF CURVE

In order to construct the rough pattern model, we should
prepare several kinds of transformations from pattern to pattern.
The first transformation to be introduced is the P-transformation
which maps a curve to its P-expression.

To explain the P-transformation, several notations wused in
the present paper and the notion of P-expression of a curve will
be given in this chapter.

A planner curve C may generally be expressed by the set of
points (x(s), y(s)) :

C = { (x(s), y(s)) | 0ssst 1}, (2)

where x(s) and y(s) are the functions, having x-y coordinates as
their values, respectively, of the length s of the curve from a
point on C (or the end point in the case of an open curve). We
also identify the x-axis and the y-axis with the real axis and
the imaginay axis, respectively. Thus the plane considered is
identified with the Gaussian one. Let i denotes the imaginary
unit /Y-1. Hence a complex number

z(s) = x(s)+iy(s) (3)

will be identified with a point (x(s),y(s)). The curve C can be
therefore identified with the complex-valued function z.

Let us consider an open curve C (Fig.3) which 1is piecewise
smooth. 1[It consists of n smooth subcurves Ci, -+, Cnh. Taking a
pass which starts at an end point of Ci1 and arrives at an end
point of Cn, by s we denotes the length of the curve from the
starting point to a current point. Let s; denote the length from
the starting point of C to the end point of C;. By a; we mean
the angle spanned by the two tangential lines at the end point of
Cij, where ae is the angle between the tangential line of Ci; and
the horizontal coordinate. It is called the bending angle and is
to be measured counter-clockwise.

Since we assumed that each subcurve C; is smooth, we have
the curvature «;(s) on the point s on C;. We assume that «;(s)

406



Spectral Analysis of Form by FD

is positive or negative if the center of the curvature exists in
the lefthand or righthand of the subcurve C; when we proceed from

Fig.3 An open curve being piecewise smooth

the starting point to the end point of C;, respectively. Then,
the total curvature function 6 is defined recursively as, for s
in [se,s11,

8(s) = aa+f§axx(s)ds. (4)
and for s in (s;-1, s;1,
8(s) = 6(si-1)+ai-1+[3  Ki(s)ds (J=2,--m).  (5)
Fig.4 shows an example of a total curvature function. As

seen in this example, the total curvature function is globally
decreasing because the curve (a) in Fig.4 is globally clockwise.
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Fig.4 An example of total curvature function

Using the total curvature function, we shall now define the
P-expression w of the curve C as

w(s) = explig(s)], (6)

where i denotes the imaginary unit J/-1. Now we have got the
P-transformation P which maps a curve z to its P-expression :

P(z) = w. 7)

When we regard w in (6) as the signal of the curve in the sense
of communication engineering, then 6 may correspond to the phase
angle of the signal. That's why we use the letter P in the name
of this transformation.

As easily seen, the curve C or =z is given by the
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P-expression w as follows

z(s) = z(0)+_[gw(t)dt. (8)
Thus, given the P-expression w, the curve z of which P-expression
is w is uniqely determined up to translation. So, under fixed
z(0) we have got the inverse P-transformation P-1! :

(9)

Fig.5 A curve consisting of only line segments

As an example we shall consider the special case of a curve
which consists of only line segments (Fig.5). In this case each
curvature «k;(s) is constantly equal to 0. Hence the total
curvature function becomes more simple as

8(s) = ae for s in [se, 511,
6(s) = B(s1)+a: for s in (si, s21, (10)
8(s) = B(sn-1)+an-1 for s in (5n-1,8n1,
where se = 0 and sn = 1, the total length of a curve. When we
write the sum of bending angles ae, -+, a; as 8;, the total

curvature function and the P-expression are simply written,
respectively, as

6(s) = BHe for s in [se, s11,
8(s) = 81 for s in (s1, s21, 11)
8(s) = Bn-1 for s in (sn-1,5n1,

and
w(s) = expliBel for s in [se, s11,
w(s) = explifil for s in (s1, s21, (12)
w(s) = explifn-11 for s in (sn-1,5nl.

Noting that w(s) is constant while s is in (s;-1, s;l1, we can
easily compute the curve z from the P-expression w :

z(s) = z(0)+(s-se)explifdel for s in (se, s11,
z(s) = z(s1)+(s-s1)explifi] for s in (s, s21, }(13)
z(s) = Z(Sn-1)+(5-Sn-1)explifn-11 for s in (sa-1,5al.
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The reason why we use the P-expression instead of the curve
itself is due to the vision psychology rather than a mathematical
convenience. Speaking of our perception, say visual, auditory,
and so on, it is generally said that our perception 1is more
sensitive to the change of stimulus rather than to the absolute
value of stimulus. So the vision can be said to be more
sensitive to the deviation of a point on a curve rather than the
absolute position of the point. Remembering (6), we have

z(s+ds)-z(s) = w(s)ds. (14)

We can see from this equation that the P-expression w gives the
deviation of a point when we proceed unit length along the curve.
That's why we use the P-expression w instead of the position z of
a point itself.

2. FOURIER DESCRIPTOR

The second transformation to be introduced 1is the Fourier
transformation F which maps the P-expression w to a sequence of
complex numbers c(k): for k = 0, *1, %*2, ...,

c(k) = [3w(s)exp[-12nkslds. (15)

This sequence c(k)'s is called the spectrum of the curve =z. A
number c(k) is also called the spectral component at frequency K.
A subset of the set of Fourier coefficients c(k)'s might have
some information with respect to the curve z. Thus it is <called
Fourier Descriptors. In the case of a curve consisting of only
line segments (see Fig.5), the coefficient <c(kK) 1is easily
calculated as follows :

c(0) =‘£ (sj-sj-1)explif;-11,

=1 (16)
c(k) =‘2‘ (expli2nks ;1-expli2nks;-11)/2nkexplif;-11 (k+0)<

i=

Using the spectrum, we may define the power spectrum as a
sequence of real numbers

p(kK) = |c(k)|2 (k = 0, 1, *2, ---). (17
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Fig.6 An example of the power spectrum

Fig.6 shows an example of the power spectrum. As seen in
this figure, the dominant information of the pattern concentrates
on the low frequency part of the power specrum. Thus we can

expect to get a rough pattern by means of the spectral components
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contained in low frequency part.
So the third transformation to be introduced is the low-pass
filter Ln, which maps the spectrum c to its subset cxn as follows
c(k) € if |k|sN );
cn(k) = { (18)
0 ( otherwise ).

Saying in other words, the low-pass filter plays a role to
extract the low frequency part of the spectrum. The extracted
spectrum cn is called the 1low-pass spectrum with the cut
frequency N.

3. ROUGH TRANSFORMATION
Scine the low-pass spectrum cx is considered to have the
dominant information of a given curve, we might expect to obtain
a rough pattern by applying the inverse transformations
introduced above to the low-pass spectrum cx. That is, the rough
pattern zn will be defined as
zn = P-1.F-1(cwn), (19
where F-1! and P-! are the Fourier inverse transformation and the
inverse of P-transformation, respectively. More concretely, when
we write F-1(cn) as wn, then
N
wn(s) =kZ_NCN(k)exp[i2%ks], (20)

and

]

Zn(s) z(0)+jgwn(t)dt 21)

N
Z(0)+k§_u(_E)Cn(k)(eXp[2%ikS]-l)/2ﬂik.

Now we have finally got the overall transformation

Ry = P-'-F-!'-Ln-F-P, (22)
which maps a given curve to 1its rough pattern with the cut
freqency N. This transformation is called a rough
transformation.

Fig.7 shows one of examples of rough patterns obtained by
means of the rough transformation. The number N indicates the
cut frequency of the low-pass filter used.

As easily seen from this demonstration, the smaller the cut
frequency becomes, the larger the degree of roughness becomes.
So we may say that the rough transformation introduced here has
the ability of good approximation in the sense of wvisual
psychology. This sort of property has been confirmed to appear
in the simulation expreiment for a wide range of patterns.

Fig.8 is the case of an open curve. This example seems to
indicate the another aspect of the rough transformation. When we
draw a pattern, say a chinese character, i.e. Kanji, with a very
high speed, we are forced to approximate the given pattern. As a
result, we would have an approximated pattern which does not
exactly coincide with the original one, but has the same features
as the original one. In this situation, the details of the
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original pattern would be cut out and only its dominant part
would be preserved.

N=1 N=2 N=4 N=38

Fig.7 Examples of rough patterns

Tme_s7 N=4
rd

Fig.8 Examples of rough patterns

When we survey those rough patterns from the small N to the
large N, we can see that the details which were cut visually out
are gradually recovered as the cut frequency N 1is increasing.
Thus, it might be said that the rough transformation also gives a
sort of model for a cursive hand-writing or a running style of
hand-writing.

5. CONCLUDING REMARKS

When we want to extract automatically a rough pattern from a
given pattern, we should set the cut frequency N. As seen in
Fig.7 and 8, the proper cut frequency depends on a given pattern.
So we should automatically determine the cut frequency as well as
the extraction of a rough pattern.

It might be remarked that the notion of the entropy will
serve to the automatic selection of the cut frequency. By means
of Perseval's equality, it is easily shown that
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T p(y) = 1. (23)
J

Hence the power spectrum p satisfies the axiom of probability
distribution. We define the complexity of a pattern C having the
power spectrum p as follows

G(C) = -Z p(j)log p(J). (24)
3
Fig.9 shows several examples of the complexity. As easily

conjectured, the smaller the complexity becomes, the larger the
degree of concentration of the power spectrum becomes.

OL=A A aa— -

G= 0 .863 1.29 1.23 1.63 1.68 0
Fig.9 Examples of the complexity

Thus the measure of complexity is considered to serve the
determination of the cut frequency. This is one of important
problems to be investicated in the near future.
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